Homoclinic solutions for eventually autonomous high-dimensional Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS
In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.
متن کاملPERIODIC SOLUTIONS OF CERTAIN THREE DIMENSIONAL AUTONOMOUS SYSTEMS
There has been extensive work on the existence of periodic solutions for nonlinear second order autonomous differantial equations, but little work regarding the third order problems. The popular Poincare-Bendixon theorem applies well to the former but not the latter (see [2] and [3]). We give a necessary condition for the existence of periodic solutions for the third order autonomous system...
متن کاملHomoclinic Solutions for Second-order Non-autonomous Hamiltonian Systems without Global Ambrosetti-rabinowitz Conditions
This article studies the existence of homoclinic solutions for the second-order non-autonomous Hamiltonian system q̈ − L(t)q + Wq(t, q) = 0, where L ∈ C(R, Rn ) is a symmetric and positive definite matrix for all t ∈ R. The function W ∈ C1(R × Rn, R) is not assumed to satisfy the global Ambrosetti-Rabinowitz condition. Assuming reasonable conditions on L and W , we prove the existence of at leas...
متن کاملGlobal Bifurcation of Homoclinic Solutions of Hamiltonian Systems
We provide global bifurcation results for a class of nonlinear Hamiltonian systems.
متن کاملperiodic solutions of certain three dimensional autonomous systems
there has been extensive work on the existence of periodic solutions for nonlinear second order autonomous differantial equations, but little work regarding the third order problems. the popular poincare-bendixon theorem applies well to the former but not the latter (see [2] and [3]). we give a necessary condition for the existence of periodic solutions for the third order autonomous systems, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2002
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(02)00281-0